
DAIDALUS: DETECT AND AVOID ALERTING LOGIC FOR UNMANNED
SYSTEMS

César Muñoz, Anthony Narkawicz, George Hagen, Jason Upchurch, Aaron Dutle, María Consiglio
NASA Langley Research Center, Hampton, VA

James Chamberlain
Sunrise Aviation, Inc., Newport News, VA

Abstract
This paper presents DAIDALUS (Detect and

Avoid Alerting Logic for Unmanned Systems), a ref-
erence implementation of a detect and avoid concept
intended to support the integration of Unmanned Air-
craft Systems into civil airspace. DAIDALUS consists
of self-separation and alerting algorithms that provide
situational awareness to UAS remote pilots. These al-
gorithms have been formally specified in a mathemat-
ical notation and verified for correctness in an interac-
tive theorem prover. The software implementation has
been verified against the formal models and validated
against multiple stressing cases jointly developed by
the US Air Force Research Laboratory, MIT Lincoln
Laboratory, and NASA. The DAIDALUS reference
implementation is currently under consideration for
inclusion in the appendices to the Minimum Opera-
tional Performance Standards for Unmanned Aircraft
Systems presently being developed by RTCA Special
Committee 228.

Nomenclature
Acronyms
CAT Collision Avoidance Threshold
DAA Detect and Avoid
DAIDALUS Detect and Avoid Alerting Logic for

Unmanned Systems
MOPS Minimum Operational Performance

Standards
NAS National Airspace System
NMAC Near Mid-Air Collision
PIC Pilot in Command
RA Resolution Advisory
SAA Sense and Avoid
SI International System of Units
SST Self-Separation Threshold
TCAS Traffic Alert and Collision Avoidance

System
UAS Unmanned Aircraft System
WCV Well-Clear Violation Volume
Symbol
[B,T] Lookahead time interval, where

0 ≤ B < T
D Horizontal distance
H Vertical distance
NMACD Diameter of NMAC cylinder
NMACH Height of NMAC cylinder
DMOD Modified distance threshold
TAUMOD Modified tau threshold
HMD Horizontal Miss Distance
dcpa Distance at closest point of approach
ε Numerical parameter with value ±1
s,v Two-dimensional aircraft state, horizon-

tal position and velocity, respectively
sz,vz Vertical aircraft state, altitude and ver-

tical speed, respectively
τmod Modified tau (time function of states)
tcpa Time to closest point of approach
tcoa Time to co-altitude
ZTHR Vertical distance threshold
TCOA Time to co-altitude threshold
[tin, tout] Time interval of well-clear violation,

i.e., tin is time to well clear violation,
and tout is time to exit well-clear viola-
tion

own Ownship state
int Intruder state
Subscripts
o, i Ownship and intruder information of a

position or velocity vector
x, y, z Northern, eastern, and altitude compo-

nent of a position or velocity vector

Introduction
NASA’s Unmanned Aircraft Systems Integration

in the National Airspace System (UAS in the NAS)
project aims to develop key capabilities to enable
routine and safe access of public and civil use un-
manned aircraft systems (UAS) to non-segregated
airspace operations. As part of the UAS in the NAS
project, NASA has developed a detect and avoid
(DAA) concept for UAS [1] that extends the sense
and avoid (SAA)1 concept outlined in the final report
of the FAA-sponsored Sense and Avoid Workshop
for UAS [2], wherein sense and avoid is defined as
“the capability of a UAS to remain well clear from
and avoid collisions with other airborne traffic.” In
support of this capability, the NASA DAA concept
includes a mathematical definition of well clear to
characterize a well-clear boundary and a suite of
algorithms that provide situational awareness of this
well-clear boundary to UAS operators.

The well-clear boundary defines a volume, re-
ferred to as the well-clear violation volume (WCV),
such that aircraft pairs jointly occupying this volume
are considered to be in a well-clear violation [3].
This volume is intended to be both large enough to
prevent safety concerns for controllers and see-and-
avoid pilots and small enough to avoid disruptions
to traffic flow. Formally, the WCV is defined by a
boolean predicate on the states of two aircraft, i.e.,
their position and velocity vectors at the current time.
In particular, two aircraft are well clear of each other
if appropriate distance and time variables, determined
by the relative aircraft states, remain outside a set
of predefined threshold values. These distance and
time variables are closely related to variables used
in the Resolution Advisory (RA) logic of the Traffic
Alert and Collision Avoidance System II Version 7.1
(TCAS II) [4].

The NASA DAA concept includes a suite of
algorithms called DAIDALUS (Detect and Avoid
Alerting Logic for Unmanned Systems). The top-level
functionality provided by DAIDALUS is situational
awareness to UAS operators in the form of maneuver
guidance intended to aid in:
1) maintaining well-clear status, or
2) regaining separation if a well-clear violation has

1The terms sense and avoid and detect and avoid are both used
interchangeably in UAS literature.

already occurred or a well-clear violation is
unavoidable.
DAIDALUS includes algorithms for determining

the well-clear status between pairs of aircraft at the
current time and for predicting a well-clear viola-
tion within a given lookahead time, assuming non-
maneuvering trajectories. In the case of a predicted
well-clear violation, DAIDALUS also computes the
time interval of the well-clear violation. Furthermore,
DAIDALUS implements algorithms for computing
conflict bands, assuming a simple kinematic trajectory
model for the ownship aircraft. These bands represent
ranges of track (or heading), ground speed (or ground
track), and vertical speed maneuvers that are predicted
to result in well-clear violation with one of more
traffic aircraft within a given lookahead time. Conflict
bands are intended to provide information to the UAS
remote pilot and assists the pilot in selecting trajec-
tories that will remain well clear of other aircraft.
When aircraft are not well clear, or when a well-
clear violation is unavoidable, DAIDALUS computes
well-clear recovery bands, which represent ranges
of horizontal and vertical maneuvers that a remote
pilot may take to regain well-clear status within the
minimum possible time, while minimizing collision
risk. Recovery bands are designed so that they do
not conflict with RA maneuvers generated by systems
such as TCAS II. Finally, DAIDALUS also imple-
ments two configurable alerting algorithms that return
an integer value indicating the level of alert. The
lowest possible returned alert level is zero, which
indicates that no alert has been issued. Higher alert
levels correspond to increased levels of threat of a
well-clear violation.

DAIDALUS is currently under consideration for
inclusion as the DAA reference implementation of
the RTCA Special Committee 228 Minimum Opera-
tional Performance Standards (MOPS) for Unmanned
Aircraft Systems. The remainder of this paper dis-
cusses the high-level architecture of DAIDALUS,
its data requirements, and functional specifications.
It also describes the validation and verification ef-
forts aimed at increasing the confidence that the
software correctly implements its functional require-
ments. The DAIDALUS software library is released
under NASA’s Open Source Agreement.2 The formal

2http://www.github.com/nasa/wellclear.

2

http://www.github.com/nasa/wellclear.

Surveillance Data Sources:
- Ownship Position, Velocity
- Intruder Position, Velocity

DAIDALUS Algorithms

Detection:
State Projections

Determine Processing:
Maneuver Guidance Bands

Alerting Logic

Separation Standards:
- Definition of Well Clear
- Alerting criterion

Visual Display Aural Indicators

Configuration Parameters:
- Ownship performance

limitations, e.g., max turn rate
- Relevant wind field data

crew interface

Figure 1. High-Level Architecture of DAIDALUS

models of the algorithms implemented in DAIDALUS
are written in the mathematical notation of the Pro-
totype Verification System (PVS) [5].

DAIDALUS
DAIDALUS is a software implementation in-

tended to satisfy the operational and functional re-
quirements detailed in NASA’s DAA concept of inte-
gration for UAS [1]. The high-level functional rela-
tionship between the DAIDALUS implementation and
the surveillance data sources, separation standards,
and crew interface is depicted in Figure 1.

In particular, DAIDALUS provides algorithms
that:
1) determine the current, pairwise well-clear status

of the ownship and all aircraft inside its surveil-
lance range,

2) compute maneuver guidance in the form of
ranges of maneuvers that a pilot-in-command
(PIC) may take that will cause the aircraft to
maintain or increase separation from the well-
clear violation volume, or allow for recovery
from loss of separation in a timely manner
within the performance limits of the ownship
aircraft, and

3) determine the corresponding alert type, based
on a given alerting schema, corresponding to
the level of threat to the well-clear volume.

The functionalities provided in 1), 2), and 3) are
respectively referred to as detection, determine-
processing, and alerting logic, as illustrated in Fig-
ure 1.

t = t0

t = t0+T

Ownship
Intruder

Constant-Velocity
Projection Along
Lookahead Time, T

Figure 2. Constant Velocity Aircraft Projection

The detection logic computes a time interval
of well-clear violation. The predictions made by
the detection logic are based on pairwise, constant-
velocity projections over a given lookahead time.
These linear projections are illustrated in Figure 2.
The own aircraft is referred to as the ownship, and
each traffic aircraft is referred to as an intruder.

The maneuver guidance provided by DAIDALUS
is presented in the form of conflict bands, i.e.,
ranges of ownship maneuvers that lead to a well-
clear violation, or recovery bands, i.e., ranges of
ownship maneuvers that recover from a present or
unavoidable well-clear violation. The predictions used
to compute these bands are based on constant turn rate
and constant acceleration projections of the ownship,
and constant-velocity projections of traffic aircraft.
Three types of bands are provided by DAIDALUS:
(1) track ranges (or heading, if wind information is
provided), (2) ground speed ranges (or air speed, if
wind information is provided), (3) and vertical speed
ranges. As a notional example, Figure 3 illustrates
state projections for the ownship and intruder aircraft
used in the computation of track conflict bands.

Conflict bands may be either preventive or cor-
rective. A band is preventive if no well-clear violation
is predicted along the ownship’s current velocity
vector, up to the lookahead time, but some maneuver
made by the ownship within its performance limita-
tions would result in a well-clear violation within the
lookahead time. A band is corrective if a well-clear
violation is predicted to occur along the ownship’s
current velocity vector within the lookahead time. A
corrective band becomes a recovery band if loss of
well clear has already occurred, or cannot be avoided.
The recovery band provides maneuver guidance to
regain well-clear status in the minimum time within
the ownship performance limits.

Figure 4 depicts a conceptual view of
the determine-processing functionality provided by
DAIDALUS, where track bands are shown for an ex-

3

Ownship

Traffic

Region in space where well-clear
violation predicted, based on range
of maneuvers

Maneuver ending at lookahead
time
Ownship performance limitation,
right

Ownship performance limitation,
left

Range of manuevers predicted to
lead to well-clear violation (conflict
bands)

Figure 3. State Projections with Conflict Bands

ample encounter at four discrete times. The outer cir-
cle around the ownship represents the self-separation
threshold (SST), which is the area relevant to the
determine processing function. The inner gray area
around the ownship represents the well-clear violation
volume, i.e., the WCV.3 A description of the deter-
mine processing behavior for several times of interest
using the example encounter from Figure 4 follows.
• At time t = t0, the ownship and intruder aircraft
are depicted in their initial configuration. Since
the intruder aircraft is outside the SST, no bands
are displayed for the ownship.

• At time t = t1, the ownship and intruder aircraft
are at their new positions with the intruder inside
of the SST of the ownship. Thus, the maneuver
guidance calculated by DAIDALUS is presented
as preventive bands (shown in amber in Fig-
ure 4), signifying the range of track maneuvers
the ownship should avoid since they would lead
to a well-clear violation within the lookahead
time.

• At time t = t2, the ownship and intruder en-
counter has evolved in such a way that the
preventive bands from time t1 have become cor-
rective bands, i.e., the conflict track band has
grown to include the ownship’s current track.
Continuing along a constant velocity is predicted

3The actual shapes of the SST and WCV depend on the aircraft
states.

SST

WCV

Ownship

Intruder

t = t3

t = t0

t = t1

t = t2

Figure 4. Maneuver Guidance Bands

to lead to a well-clear violation.
• At time t = t3, the intruder is now within the
WCV of the ownship, and a well-clear violation
has occurred. Thus, recovery bands are now
computed (shown as a dashed green arc). They
provide guidance to the UAS operator as to the
range of maneuvers within ownship performance
limits that will allow the UAS to regain well clear
in a timely manner.
DAIDALUS implements two alternative alerting

schemas. One schema is based on the prediction of
well-clear violations for different sets of increasingly
conservative threshold values. The second schema is
based on the types of bands computed for a single set
of threshold values, which can be either preventive
or corrective. In general, both schemas yield alert
levels that increase in severity as a potential pairwise
conflict scenario increases in risk. The actual alert-
ing schema for NASA’s DAA concept is still under
development.

Data Requirements
Table I defines the minimum input requirements

for the ownship and traffic aircraft. DAIDALUS ac-
cepts a wide set of units, including time and distance
units from the International System of Units (SI).

4

Table I. Data input requirements

Ownship Traffic

Identifier, e.g., call sign Identifier, e.g., call sign
Latitude Latitude
Longitude Longitude
Altitude Altitude
Ground speed Ground speed
Airspeed (optional) –
Ground track Ground track
Heading (optional) –
Vertical speed Vertical speed

Table II. Configurable parameters

Parameter Default value

Turn rate 3 deg/s
Bank angle 30 deg
Horizontal acceleration 2 m/s2
Vertical acceleration 2 m/s2
Minimum ground speed 0 knots
Maximum ground speed 700 knots
Minimum vertical speed -5000 fpm
Maximum vertical speed 5000 fpm
Track step 1 deg
Ground speed step 1 knot
Vertical speed step 10 fpm

Northern latitudes and eastern longitudes are positive.
Track and heading are provided in a clockwise from
true north convention. If airspeed and heading are
provided for the ownship, this information is used
in conjunction with ground speed and ground track
to compute local winds. The DAIDALUS algorithms
then apply this wind information to aircraft current
states for predicting aircraft trajectories and for com-
puting guidance maneuvers.

The DAIDALUS bands algorithm uses the con-
figurable parameters in Table II, whose default values
are listed in the second column. The default values
can be changed through the programming interface or
via configuration files. Not all parameters in Table II
are required. In particular, either one of turn rate or
bank angle can be specified to compute track bands
(heading bads, if wind information is provided). Hor-
izontal acceleration is only used to compute ground
speed bands (airspeed bands, if wind information is
provided).

Table III shows the set of DAIDALUS outputs.
The second column in the Table III indicates whether

Table III. Data output requirements

Output Approach

Time interval of violation 1×1
Track bands 1×N
Ground speed bands 1×N
Vertical speed bands 1×N
Alerting level 1×1

the output is computed using a 1×1 approach, i.e.,
pairwise, or a 1×N approach, i.e., ownship vs. traffic
aircraft. Each set of bands consists of a list of inter-
vals, representing ranges of maneuvers, and a list of
elements of the enumerated type: NONE, CONFLICT,
RECOVERY. The enumerated types CONFLICT and
RECOVERY identify conflict and recovery maneuvers,
respectively. The enumerated type NONE represents
maneuvers that do not lead to well-clear violations.
In the case of recovery bands, the minimum time
to recover from well-clear violation, within the air-
craft performance limitations, is also computed. When
wind information is available, heading bands and
airspeed bands are computed instead of track bands
and ground speed bands, respectively.

Functional Requirements
This section describes the underlying mathemat-

ics and logic of the DAIDALUS algorithms. All
of the algorithms implemented in DAIDALUS have
corresponding formal specifications written in the
mathematical notation of the Prototype Verification
System (PVS) [5]. Furthermore, these algorithms have
also been verified for functional correctness in PVS.

The algorithms presented in this section assume
an Euclidean 3-dimensional coordinate system. This
coordinate system is based on a projection of the
ownship and traffic geodesic coordinates into the
plane that is tangent to the the Earth at sea level
at the ownship’s position. The following definitions
are assumed. For convenience, the formulas below
are presented in a relative coordinate system where
the intruder aircraft is at the origin and the ownship
is moving relative to the intruder, i.e., s = so − si and
v = vo −vi .
• Horizontal range:

r (t) = ‖s+ tv‖ ≡
√
s2+2t(s ·v)+ t2v2.

5

• Time to Horizontal Closest Point of Approach
(TCPA):

tcpa(s,v) ≡
{
− s·v

v2 if v , 0,
0 otherwise.

• Horizontal Distance at TCPA:

dcpa(s,v) ≡ (tcpa(s,v)) = ‖s+ tcpa(s,v)v‖.

• Vertical range at time t:

rz (t) ≡ |sz + tvz |.

• Time to Co-Altitude:

tcoa(sz,vz) ≡
{
−

sz
vz

if szvz < 0,
−1 otherwise.

• Modified Tau:

τmod(s,v) ≡
{
DMOD2−s2

s·v if s ·v < 0,
−1 otherwise.

Well-Clear Logic

The well-clear logic is implemented by the
boolean function WCV defined in Formula (1). This
function has as inputs the states of the ownship and
intruder aircraft, own and int, respectively. The func-
tion returns the value true if and only if the aircraft
are in well-clear violation at the current time. The
threshold values are configurable parameters of the
logic. By default, they are set to the following values:
DMOD = HMD = 4000 ft, ZTHR = 450 ft, TAUMOD=35 s,
TCOA = 0 s. Note that it is assumed that HMD = DMOD.

WCV(own,int) ≡

let (s, sz) = own.pos−int.pos,

(v,vz) = own.vel−int.vel in
Horizontal_WCV(s,v) and
Vertical_WCV(sz,vz),

(1)

where

Horizontal_WCV(s,v) ≡

‖s‖ ≤ DMOD or
(dcpa(s,v) ≤ HMD and 0 ≤ τmod(s,v) ≤ TAUMOD),

(2)

and

Vertical_WCV(sz,vz) ≡

|sz | ≤ ZTHR or 0 ≤ tcoa(sz,vz) ≤ TCOA.
(3)

Detection Logic
The well-clear detection logic is implemented by

the function detection defined in Formula (4). This
function has as inputs the states of the ownship and
intruder aircraft, own and int, respectively, and a
lookahead time interval [B,T]. The function returns
a time interval [t in, tout] within [B,T]. If t in ≤ tout, the
time t in represents time to well-clear violation and
tout represents the time to exit well-clear violation,
assuming constant velocity. The returned time interval
is empty, i.e., t in > tout, if the aircraft are not predicted
to be in violation within the interval [B,T]. Typically,
the value of B is set to 0. However, the functions
below allow for an arbitrary lookahead time interval
[B,T], provided that 0 ≤ B < T .

detection(own,int,B,T) : R2 ≡
let (s, sz) = own.pos−int.pos,

(v,vz) = own.vel−int.vel in
det_WCV(s, sz,v,vz,B,T),

(4)

where the function det_WCV is defined in the Ap-
pendix.

Determine-Processing Logic
The well-clear determine-processing algorithm

is implemented in DAIDALUS by functions that
compute maneuver guidance bands, i.e., conflict or
recovery bands. When the computed conflict bands
cover the full range of possible maneuvers, e.g., when
the aircraft are in well-clear violation, DAIDALUS
provides recovery bands. Recovery bands represent
ranges of track, ground speed, and vertical speed for
the ownship that lead to well-clear status in a timely
manner. Computation of conflict and recovery bands
is discussed subsequently.

Conflict bands are computed by incrementally
projecting the maneuvers the ownship may take,
within its specified performance limitations, up to the
time such that a maneuver achieved. Subsequently, the
ownship state is projected along a constant velocity
trajectory for the the remainder of the lookahead time,
i.e., the lookahead time T less the time to achieve

6

the initial maneuver. Furthermore, each traffic aircraft
is projected along a constant-velocity trajectory over
the entire lookahead time. Together, these projections
result in a set of maneuver guidance bands based on
the most recently updated state information and are
therefore influenced by, for example, sensor uncer-
tainty and the particular update rate in use.

Recovery bands are computed by finding the
smallest time, t, which is less than the lookahead time,
T , such that the ownship and intruder are well clear
when the aircraft states are projected to time t. In
particular, these projections are made iteratively for
increasing candidate values of t (less than T) over
ranges of maneuvers maneuvers within the ownship’s
performance limits. Thus, t represents the smallest
(first) time at which the ownship may escape a well-
clear violation. The well-clear recovery bands algo-
rithm guarantees that before time t, the aircraft do not
violate a given minimum horizontal separation D and
a given minimum vertical separation H . The values
of D and H are configurable parameters. The default
values of D and H are set to the DMOD and ZTHR
threshold values corresponding to the TCAS II RA
logic.

At the core of the functions to compute track,
ground speed, and vertical speed bands is a generic,
pairwise algorithm bands_1x1, defined by For-
mula (5), that returns a set of intervals containing
maneuvers that yield well-clear violations for a given
kinematic trajectory. This algorithm has as inputs:

• the relative state of the aircraft,
• a lookahead time interval, [B,T],
• a current maneuver value for the ownship, c,
• respective minimum and maximum values, umin

and umax, for the maneuvers,
• a maneuver step, e,
• an acceleration, a, for the maneuver,
• horizontal and vertical distances D and H , and
• respective position and velocity functions, p̄ and
v̄, which kinematically project the relative state
of the aircraft for a given time using a constant
acceleration.

Typically, the value of B is 0. When this value is non-
zero, the algorithm bands_1x1 also includes ranges
of values that violate the minimum separation, given
by D and H , before the time T . This configuration is

useful when computing recovery maneuvers.

bands_1x1(s,v, sz,vz,B,T,c,umin,umax, e,

a,D,H, p̄, v̄) : set[R2] ≡
left_1x1(. . .) ∪ right_1x1(. . .).

(5)

The auxiliary functions left_1x1 and right_1x1
are defined in the Appendix. These functions have
the same parameters as bands.

From bands_1x1, the generic algorithm bands,
defined by Formula (6), computes maneuver bands
for an ownship and a set of traffic aircraft. In this
function, the parameters own and traf represent the
state of the ownship and a set of states for all traffic
aircraft, respectively.

bands(own,traf,B,T,c,umin,umax, e,a,

D,H, p̄, v̄) : set[R2] ≡
β := ∅;
foreach int in traf do
let (s, sz) = own.pos−int.pos,

(v,vz) = own.vel−int.vel in
β := β∪bands_1x1(s,v, sz,vz,B,T,

c,umin,umax, e,a,D,H, p̄, v̄);
endforeach
return β,

(6)

where ‘:=’ denotes the assignment operator, and ‘;’
denotes the sequential operator for imperative pseu-
docode.

The maneuver ranges computed by the algorithm
bands correspond to intervals of type CONFLICT.
Intervals of type NONE are computed as the comple-
ment of the union of these intervals with respect to
[umin,umax]. The algorithms that compute track, ground
speed, and vertical speed for a given lookahead time,
T , are defined using the following functions.

trk_bands(own,traf,T) : set[R2] ≡
bands(own,traf,0,T,trk(own),−π, π,

TrkStep,TurnRate,0,0,TrkPos,TrkVel),
(7)

7

gs_bands(own,traf,T) : set[R2] ≡
bands(own,traf,0,T,gs(own),MinGs,

MaxGs,GsStep,HAccel,0,0,GsPos,GsVel),
(8)

and

vs_bands(own,traf,T) : set[R2] ≡
bands(own,traf,0,T,vs(own),MinVs,

MaxVs,VsStep,VAccel,0,0,VsPos,VsVel),
(9)

where
• trk, gs, and vs are functions that compute the
current track, ground speed, and vertical speed
of an aircraft, respectively;

• MinGs and MaxGs are the minimum and maxi-
mum ground speed, respectively;

• MinVs and MaxVs are the minimum and maxi-
mum vertical speed, respectively;

• TrkStep, GsStep, VsStep are the track, ground
speed, and vertical speed steps, respectively;

• TrkPos,TrkVel are functions that kinematically
project the relative position and velocity of the
aircraft for a given time and constant turn rate;

• GsPos, GsVel are functions that kinematically
project the relative position and velocity of the
aircraft for a given time and constant horizontal
acceleration;

• VsPos, VsVel are functions that kinematically
project the relative position and velocity of the
aircraft for a given time and constant vertical
acceleration.
Recovery bands are computed using the algo-

rithm rec_bands, defined by Formula (10), which is
based on the generic algorithm bands. The algorithm
rec_bands has as inputs:
• the state of the ownship, own,
• a set of states for all traffic aircraft, traf,
• a lookahead time, T ,
• a current maneuver value for the ownship, c,
• respective minimum and maximum values for the
maneuvers, umin and umax,

• a maneuver step, e,
• an acceleration for the maneuver, a
• respective horizontal and vertical distances, D
and H , and

• respective position and velocity functions, p̄ and

v̄, which kinematically project the relative state
of the aircraft for a given time using a constant
acceleration.

The algorithm rec_bands returns a set of intervals
and a time.

rec_bands(own,traf,T,c,umin,umax, e,a,

D,H, p̄, v̄) : [set[R2],R] ≡
let β = bands(own,traf,0,T,c,

umin,umax, e,a,D,H, p̄, v̄) in
if [umin,umax] ⊆ β then

let t = min
0<B≤T

{[umin,umax] *

bands(own,traf,B,T,c,

umin,umax, e,a,D,H, p̄, v̄)} in
if t = T then ([umin,umax],−1)

else [bands(own,traf, t,T,c,

umin,umax, e,a,D,H, p̄, v̄), t]
endif

else
(β,0)

endif

(10)

The maneuver ranges computed by the algo-
rithm rec_bands correspond to intervals of type
CONFLICT. Intervals of type NONE and RECOVERY
are computed as follows. If the time computed by
rec_bands is zero, the complement of the union of
intervals computed by rec_bands, with respect to
[umin,umax], corresponds to intervals of type NONE. If
the time computed by rec_bands is negative, the
whole interval [umin,umax] is of type CONFLICT and
no recovery is possible within the performance limits
of the aircraft for the given lookahead time T . If
the time computed by rec_bands is greater than
zero, the complement of the union of the intervals
computed by rec_bands, with respect to [umin,umax],
corresponds to bands of type RECOVERY. For a band
of type RECOVERY, well-clear status will be recovered
at the time computed by the algorithm. The recovery
maneuvers are guaranteed to satisfy a given minimum
horizontal separation, D, and vertical separation, H .

The algorithms that compute track, ground
speed, and vertical speed for a given lookahead time,
T and respective minimum horizontal and vertical

8

separation, D and H , are defined using the following
functions.

rec_trk_bands(own,traf,T,D,H) :
[set[R2],R] ≡
rec_bands(own,traf,0,T,trk(own),−π, π,

TrkStep,TurnRate,D,H,

TrkPos,TrkVel),

(11)

rec_gs_bands(own,traf,T) :
[set[R2],R] ≡
rec_bands(own,traf,0,T,gs(own),MinGs,

MaxGs,GsStep,HAccel,D,H,

GsPos,GsVel),

(12)

and

rec_vs_bands(own,traf,T)

[set[R2],R] ≡
rec_bands(own,traf,0,T,vs(own),MinVs,

MaxVs,VsStep,VAccel,D,H,

VsPos,VsVel).

(13)

Alerting Logic

An alerting logic provides an indication of the
severity of the proximity of a particular traffic aircraft
to the ownship. This indication is given as a numerical
value between zero, representing no severity, and
a value, k, representing the maximally-severe alert
level. The greater the numerical value, the greater
the severity level. DAIDALUS implements two par-
ticular alerting functions, thresholds_alerting
and bands_alerting, respectively referred to as
thresholds-based alerting and bands-based alerting.
Both functions have as inputs the states of the ownship
and the intruder aircraft. A high-level description of
these functions follows, while the detailed specifica-
tions are presently under development.

The function thresholds_alerting also has
as input a list of threshold values and alerting times
denoted as {DMOD,HMD,ZTHR,TAUMOD,TCOA,T }1≤i≤k .
It is assumed that the i-th threshold values are greater
than or equal to the (i + 1)-th threshold values. The
function thresholds_alerting returns the first in-
dex, i, in the list such that detection(own,int,0,Ti)

returns true for DMODi , HMDi , ZTHRi , TAUMODi , and
TCOAi . The function returns zero if no such index
exists.

The most severe type of alert for the func-
tion bands_alerting corresponds to k = 4. Further-
more, the alerting logic implemented by this function
uses only one set of threshold values: those values
used to define the well-clear violation volume. The
value returned by bands_alerting depends on the
particular type of maneuver guidance computed by
the DAIDALUS determine processing logic. Conse-
quently, there is a correspondence in severity between
the computed alert type and the maneuver guidance
presented to the pilot. Finally, the function imple-
ments the following prioritized list of conditions.
1) If no bands are computed by bands for a con-

figurable alerting time parameter then it returns
0.

2) If time to violation is less than a configurable
time parameter then it returns 4.

3) If time to violation is less than alerting time
then it returns 3.

4) If preventive bands are computed within con-
figurable thresholds then it returns 2.

5) In any other case, it returns 1.

Verification and Validation
The DAIDALUS software was verified using the

approach called model animation [6]. In general, the
approach involves first creating formal models of the
algorithms to be verified, where the properties that
the algorithms are intended to possess are formally
proven to hold. Secondly, the formal models are
translated into the target programming language of the
implementation. Finally, both the formal models and
their implementations are each executed on a suite of
test cases, and the outputs are compared to determine
if they agree to a specified precision.

The formal models of the algorithms used in the
DAIDALUS are specified in PVS, which is both a
specification language and interactive theorem prover.
Throughout the theorem proving functionality of the
PVS, many properties of the algorithms are proven
as theorems. Examples of such theorems are correct-
ness properties of the algorithms, as well as several
statements from the DAA functional requirements.
For instance, there is a theorem concerning the track
bands algorithm that states that for any track step

9

maneuver, the corresponding interval is CONFLICT
exactly when performing the maneuver would cause
a loss of well-clear with another aircraft before the
lookahead time. These formal proofs give a high level
of assurance that the formal models of the algorithms
are correct.

The reference implementations of DAIDALUS,
written in Java and C++, closely mirror the formal
models while taking advantage of the more expressive
nature of these programming languages. In order to
assure that the implementations conform to the formal
models, both the formal models and their implementa-
tions were both tested on a set of 95 aircraft encounter
scenarios. These scenarios were developed jointly by
the USAF, Lincoln Laboratory, and NASA as a suite
of stressing cases for assessing the DAA functionality.

For some of the functionality provided by
DAIDALUS, testing whether the formal models and
their reference implementations agree or not is
straightforward. As an example, the well-clear vio-
lation logic computes a boolean value indicating the
well-clear status between the ownship and a traffic
aircraft. Testing if this logic is correctly implemented
in software amounts to check if the same boolean
value is computed in both the formal model and
the software implementation. On the other hand,
for algorithms that compute a numerical value the
verification is more complicated since the outputs,
although logically equivalent, may be different due to
numerical approximations. To mitigate this, a Monte
Carlo approach was used to validate the bands al-
gorithms. After computing bands using the software
implementations of the algorithms and their formal
models, 400 random sample points in each band were
chosen, and each point was tested to determine if the
computed regions agree between the implementations.
If more than 1% of the points fail to agree, then the
bands were determined to be different.

The implementations were tested on the 95 sce-
narios, each with on average 180 time steps for test-
ing. Each scenario was tested for computing conflict
bands only, and with recovery bands. Overall, less
than 0.1% of the examined steps were considered to
disagree, giving a high level of confidence that the
implementations match the formal models, and hence
perform as desired.

Conclusion
DAIDALUS is a reference implementation of

NASA’s detect and avoid concept for the integration
of UAS into the NAS. The underlying core logic of
DAIDALUS consists of: (1) a mathematical definition
of a well-clear boundary that resides inside a self-
separation volume, (2) algorithms for determining if
aircraft pairs have violated this well-clear boundary
or are predicted to violate this boundary within a
given lookahead time, and (3) a determine-processing
functionality that provides both maneuver guidance
to remote pilots and an alerting logic that provides
an indication of severity of the proximity of traffic
aircraft to the ownship. The algorithms implemented
in DAIDALUS have been formally specified and
verified for correctness in PVS. The software im-
plementations have been validated using 95 stressing
scenarios jointly developed by US Air Force Research
Laboratory, MIT Lincoln Laboratory, and NASA. The
DAIDALUS reference implementation is under con-
sideration for inclusion as reference implementation
in Minimum Operational Performance Standards for
UAS developed by RTCA Special Committee 228.

DAIDALUS has been integrated into NASA’s
Multi Aircraft Control System (MACS)4, a software
environment for rapid prototyping of air traffic con-
cepts. This software integration is currently used
in human-in-the-loop experiments at NASA Langley
Research Center to assess controller and pilot accept-
ability of NASA’s DAA concept for UAS [7].

References
[1] M. Consiglio, J. Chamberlain, C. Muñoz, and K.
Hoffler, “Concept of integration for UAS operations
in the NAS,” in Proceedings of 28th International
Congress of the Aeronautical Sciences, ICAS 2012,
Brisbane, Australia, 2012.
[2] FAA Sponsored Sense and Avoid Workshop,
Sense and avoid (SAA) for unmanned aircraft systems
(UAS), 2009.
[3] C. Muñoz, A. Narkawicz, J. Chamberlain, M.
Consiglio, and J. Upchurch, “A family of well-clear
boundary models for the integration of UAS in the
NAS,” in Proceedings of the 14th AIAA Aviation
Technology, Integration, and Operations (ATIO) Con-
ference, Atlanta, Georgia, USA, 2014.

4http://hsi.arc.nasa.gov/groups/aol/technologies/macs.php.

10

http://hsi.arc.nasa.gov/groups/aol/technologies/macs.php

[4] RTCA SC-147, RTCA-DO-185B, minimum oper-
ational performance standards for traffic alert and
collision avoidance system II (TCAS II), 2009.
[5] S. Owre, J. Rushby, and N. Shankar, “Pvs: A pro-
totype verification system,” in Proceeding of the 11th
International Conference on Automated Deduction-
cade, D. Kapur, Ed., ser. Lecture Notes in Artificial
Intelligence, vol. 607, Springer, 1992, pp. 748–752.
[6] A. Dutle, C. Muñoz, A. Narkawicz, and R. Butler,
“Software validation via model animation,” in Pro-
ceedings of the 9th International Conference on Tests
& Proofs (TAP 2015), J. Blanchette and N. Kosma-
tov, Eds., ser. Lecture Notes in Computer Science,
vol. 9154, L’Aquila, Italy: Springer, 2015, pp. 92–108.
doi: 10.1007/978-3-319-21215-9_6.
[7] J. P. Chamberlain, M. C. Consiglio, J. R. C. Jr., R.
W. Ghatas, and C. A. Muñoz, “NASA Controller Ac-
ceptability Study 1 (CAS-1) experiment description
and initial observations,” NASA, Langley Research
Center, Hampton VA 23681-2199, USA, Technical
Memorandum NASA/TM-2015-218763, 2015.

34th Digital Avionics Systems Conference
September 13–17, 2015

Appendix

det_WCV(s, sz,v,vz,B,T) : R2 ≡
let [t1, t2] = det_VWCV(sz,vz,B,T) in
if t1 > t2 then [T,B]
elseif t1 = t2 and
Horizontal_WCV(s+ t1v,v) then
[t1, t1]

elseif t1 = t2 then [T,B]
else let [t in, tout] =
det_HWCV(s+ t1v,v, t2− t1) in
[t in+ t1, tout+ t1

endif.

(14)

det_VWCV(sz,vz,B,T) : R2 ≡
if vz = 0 and |sz | ≤ ZTHR then [B,T]
elseif vz = 0 then [T,B]
else let [t1, t2] =
vertical_entry_exit(sz,vz) in
if T < t1 or t2 < B then [T,B]
else [max(B, t1),min(T, t2)]
endif

endif.

(15)

vertical_entry_exit(sz,vz) : R2 ≡
let H =max(ZTHR,TCOA|vz |) in
[
−signvzH−sz

vz
,

signvzZTHR−sz
vz

]
.

(16)

det_HWCV(s,v,T) : R2 ≡
let a = v2,

b = 2(s ·v)+TAUMOD ·v2,
c = s2+TAUMOD · (s ·v)−DMOD2 in

if a = 0 and ‖s‖ ≤ DMOD then [0,T]
elseif ‖s‖ ≤ DMOD then [0,min(T,Θ(s,v,1))]
elseif s ·v ≥ 0 or b2−4ac < 0 then [T,0]

else let t =
−b−

√
b2−4ac
2a

in

if ∆(s,v) ≥ 0 and t ≤ T then
[max(0, t),min(T,Θ(s,v,1))]

else [T,0]
endif

endif.

(17)

Θ(s,v,D, ε) ≡
−s ·v+ ε

√
∆(s,v,D)

v2
. (18)

∆(s,v,D) ≡ D2v2− (s ·v⊥)2. (19)

11

http://dx.doi.org/10.1007/978-3-319-21215-9_6

left_1x1(s,v, sz,vz,B,T,c,umin,umax, e,

a,D,H, p̄, v̄) : set[R2] ≡

let te =
e
a
in

t := 0;
u := c;
β := ∅;
while u < umax and t < T do

(st, sz t) = p̄(s,v,a, t);
(vt,vz t) = v̄(s,v,a, t);
if t < B then

if ‖st ‖ < D and |sz t | < H then
β := β∪ {[u,umax]};
u := umax;

endif
elseif WCV(st, sz t,vt,vz t) then

β := β∪ {[u,umax]};
u := umax;

elseif WCV(st, sz t,vt,vz t,0,T − t) then
β := β∪ {[u,u+ e]};
u := u+ e;

endif
t := t + te;

endwhile
return β;

(20)

right_1x1(s,v, sz,vz,B,T,c,umin,umax, e,

a,D,H, p̄, v̄) : set[R2] ≡

let te =
e
a
in

t := 0;
u := c;
β := ∅;
whileu > umin and t < T do

(st, sz t) = p̄(s,v,−a, t);
(vt,vz t) = v̄(s,v,−a, t);
if t < B then

if ‖st ‖ < D and |sz t | < H then
β := β∪ {[umin,u]};
u := umin;

endif
elseif WCV(st, sz t,vt,vz t) then

β := β∪ {[umin,u]}
u := umin;

elseif WCV(st, sz t,vt,vz t,0,T − t) then
β := β∪ {[u− e,u]}
u := u− e;

endif
t := t + te;

endwhile
return β;

(21)

12

	Appendix

